This is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship.

PALAEOWORLD Editorial Office
State Key Laboratory of Palaeobiology and Stratigraphy
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences
Beijingdonglu 39, 210008 Nanjing, PR China
e-mail: palaeoworld@nigpas.ac.cn

PALAEOWORLD online submission:
http://ees.elsevier.com/palwor/

PALAEOWORLD full-text (Volume 15 –) available at:
http://www.sciencedirect.com/science/journal/1871174X
ICHNOFOSSILS AND MICROBIAL ACTIVITY IN THE PRECAMBRIAN / CAMBRIAN TRANSITION OF NORTHWESTERN ARGENTINA

Guillermo ACEÑOLAZA and Florencio ACEÑOLAZA

INSUGE, CONICET/Universidad Nacional de Tucumán, Miguel Lillo 205, 4000 Tucumán. E-mail: insugeo@unt.edu.ar; facenola@sattlink.com

INTRODUCTION

Increasingly, microbial communities have become more considered by several authors, and now are recognized as important players among the Late Proterozoic and the Early Paleozoic biota. The macrobenthic fauna that lives associated to microbial mats and biofilms is in a great manner the responsible of the perturbations observed on stratal surface of sediments. These bioactivities are recorded in a varied spectrum of palaeoenvironments, from shallow to deep-water setting. Microbial mats are regarded as an important feeding source exploited by organisms since the end of the Proterozoic (Vendian). Stress relationships between microbial mats / biofilms and macroorganisms changed in time since the Vendian to the Post-Cambrian, fact that is reflected in the great disturbance seen on siliciclastic facies (Hagadorn and Bottjer, 1999; Bottjer et al., 2000).

GEOLOGY OF THE NEO PROTERozoIC-EARLY PALEozoIC IN NW ARGENTINA

In this opportunity we describe several cases of biodisturbance represented by trace fossils and wrinkle structures in the siliciclastic Puncoviscana Formation s.l. (Vendian/Tommotian). This unit displays a wide regional distribution in the northwestern provinces of Argentina, as a part of the Eastern Cordillera, the Puna high plateau and the Pampean Ranges (21° 30' to 31° S and 65° to 67° W). Lithologically, the early mentioned formation is represented by a highly folded, low metamorphosed thick sequence of turbidites, pelagic clays and scarce limestones, with a varied and important ichnofauna (Aceñolaza and Durand, 1986; Aceñolaza et al., 2000, with references).

The spatial distribution of the different ichnofossils within these platforms, pointed out that the related biota lived in different palaeoenvironmental conditions of a same relatively shallow
sea, within the western margin of Gondwana. Regional studies have allowed us to corroborate at least three ichnoassociations, whose chronological and spatial distribution is being a matter of debate (Aceñolaza and Alonso, 2000):

a) *Beltanelliformis* ichnoassociation, with only few genus without an important bathimetric and chronologic signification (*Sewkia, Planolites* and *Beltanelliformis* associated to some forms assigned to *Protopaleodyctyon* and cf. *Squamodictyon*, that are nowadays interpreted as wrinkle structures with a possible biomat origin. This kind of ichnofossils are found in heterolithic facies, characterized by an alternate succession of fine to mid sandstones with shales characterizing the proximal facies of the early mentioned basin (Jezek, 1990). The best outcrops are found in Tucumán Province (Cumbres Calchaquíes and Choromoro), Catamarca (La Cébila Creek) and Angulos (La Rioja Province).

b) The richer *Nereites* ichnoassociation usually appears in thinner sandy facies, within the interfase sandstone-shale, and displays ichnospecies as *Neonereites uniserialis*, *N. biserialis*, *Cochlichnus*, *Tasmanadia*, *Helminthoidichnites*, *Taphrehelminthopsis* and *Glockeriichnus*. It has been interpreted as of an intermediate to distal setting within the platform (Jezek, 1990). The best outcrops belonging to this ichnoassociation are placed south of Salta City (Los Guachos, Campo Quijano and Cachi localities).

c) The *Oldhamia* ichnoassociation is the most varied on ichnospecies, with several types of *Oldhamia* (*O. radiata, O. flabellata* and *O. antiqua*), *Monomorphichnus*, *Cochlichnus*, *Dimorphichnus*, *Diplchnites* and *Protichnites* among others. This set of traces is localized in fine sandstones and shales, representatives of distal facies within the platform (Jezek, 1990). Good outcrops are found in San Antonio de los Cobres, Abra Blanca, Muñano (Salta) and La Ovejería (Catamarca).

The mentioned ichnoassemblages are also representative of different feeding behaviors interpreted to be vinculated to the biomats and biofilms (grazing and mining). *Cochlichnus*, *Helminthoida*, *Helminthopsis*, *Helminthorhapes*, *Helminthoidichnites*, *Nereites*, *Neonereites*, *Oldhamia*, *Planolites*, *Scolicia*, *Taphrehelminthopsis*, *Torrowangea* and *Teptichnus* usually appear related to wrinkle structures assigned to *Kinneyia*, *Paliella*, *Protopaleodyctyon*, *Squamodictyon* and others of a possible microbial origin (Hagadorn and Bottjer, 1999). In the other hand, the relation of *Asaphoidichnus*, *Didymaulichnus*, *Dimorphichnus*, *Diplchnites*, *Glockeriia*, *Monomorphichnus*, *Multipodichnus*, *Phycodes*, *Protichnites*, *Protovirgularia* and *Tasmanadia* to wrinkle structures could be interpreted within the paleoecologic framework as of a second order feeding group.

ON SOME PALEOGEOGRAPHIC ASPECTS

Data given by sedimentology and structural geology let us recognize that these ichnoassociations appear in elongated bands of general NE/SW direction by the side of the Rio
ACEÑOLAZA AND ACEÑOLAZA: ICHNOFOSSILS AND MICROBIAL ACTIVITY

de La Plata Craton. Paleocurrent measurements and lithologic types support the idea of a cratonic origen for the materials deposited in the Puncoviscana basin (Jezek, 1990). Most of the material seems to be deposited during the early moments of the Pampean Orogen, or together with the opening of the latter. Immediately to the west, and bordering this Puncoviscana basin, are displayed the Nereites and Oldhamia ichnoassociations (Fig. 1). If we consider that Oldhamia is regarded as an Early Cambrian ichnogenus in several places (Crimes, 1994, 2000; Lindholm and Casey, 1990), we interpret that within this earlier band we should place the corresponding Neoproterozoic/ Lowermost Cambrian transition. This appreciation will contribute to the interpretation of the evolution and timing of the levels that are cropping out in the mentioned band.

Fig. 1. Hypothetical distribution scheme of ichnofacies in the Pampean Orogen in northwestern Argentina (After Aceñolaza and Alonso, 2000).

REFERENCES

