This is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship.

PALAEOWORLD Editorial Office
State Key Laboratory of Palaeobiology and Stratigraphy
Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences
Beijingdonglu 39, 210008 Nanjing, PR China
e-mail: palaeoworld@nigpas.ac.cn

PALAEOWORLD online submission:
http://ees.elsevier.com/palwor/

PALAEOWORLD full-text (Volume 15 –) available at:
http://www.sciencedirect.com/science/journal/1871174X
ILLUSTRATIONS OF POLYMEROID TRILOBITES FROM THE HUAQIAO FORMATION (MIDDLE-UPPER CAMBRIAN), PAIBI AND WANGCUN SECTIONS, NORTHWESTERN HUNAN, CHINA

PENG Shanchi1), Loren E. BABCOCK2), and LIN Huanling1)

1) Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. E-mail: speng@pub.jionline.com
2) Department of Geological Sciences, The Ohio State University Columbus, Ohio 43210, USA. E-mail: babcock.5@osu.edu

INTRODUCTION

The Huaqiao Formation, as exposed in northwestern Hunan Province, China, yields one of the most diverse trilobite assemblages known from the Cambrian. Well-preserved agnostoid trilobites from the Huaqiao Formation in two important sections, the Wangcun section, Yongshun County, and the Paibi section, Huayuan County, were recently detailed in a monograph by Peng and Robison (2000). Polymeroid trilobites are also well-preserved in the Wangcun and Paibi sections. Some of the polymeroids have been described in previous papers (e.g., Peng et al., 1995), and an exhaustive monographic compilation is underway. That work is expected to appear in the near future. For the benefit of participants in the Seventh Field Conference of the Cambrian Stage Subdivision Working Group of the International Subcommission on the Cambrian System (ISCS), a sampling of the polymeroid trilobites from the Huaqiao Formation in Wangcun and Paibi sections is illustrated here. The polymeroids illustrated here have been selected from the plates of the forthcoming monograph, and from an earlier paper (Peng et al., 1995). They serve to represent the remarkable diversity and excellent preservation of the Huaqiao fauna. Many of the taxa illustrated here will be encountered during the ISCS field excursion to northwestern Hunan.

The polymeroid trilobites from the Huaqiao Formation of northwestern Hunan include forms having aspects of both the North China and Southeast China faunal provinces (Lu et al., 1974). This assures that these assemblages will play an important role in constraining Middle and Upper Cambrian correlations within China and elsewhere in eastern Gondwana. The significance of the Huaqiao Formation polymeroids for correlation purposes is enhanced because of their co-occurrence with the well-described Huaqiao Formation agnostoids (Peng and Robison, 2000). Whereas most of the polymeroids are restricted to shelf and slope areas of Gondwana and neighboring terranes, many of the co-occurring agnostoids have distributions around
Gondwana and intercontinentally.

The polymeroids illustrated here are from key sections in the Middle and Upper Cambrian. The Wangcun section has been proposed as the stratotype for two Cambrian stages as used in China: the Wangcunian and Youshuiuan stages (Peng et al., 2001a). The Paibi section is a candidate global stratotype for the base of an Upper Cambrian series coinciding with the base of the Waergangian Stage (Peng and Robison, 2000; Peng et al., 2001b).

The plates are arranged in successive stratigraphical order to show the faunal changes among polymeroids in chronostratigraphic fashion. Specimens are labeled with a letter prefix and a number. Specimens with the prefix P are from the section near Paibi, and specimens with the prefix W are from the section near Wangcun (see Peng and Robison, 2000; also see figures in Peng et al., 2001a, 2001b). The numbers associated with these prefixes identify levels in meters above the base of the Huaqiao Formation in the respective sections. The specimens will be assigned numbers in the collection of the Museum of the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing (NIGP) upon publication of the monograph.

TAXONOMIC NOTE

A new generic name, Luyanhaoaspis, is erected here as a replacement name for Luaspis Peng, Lin, et Chen, 1995, which is preoccupied by another trilobite. The type species of Luyanhaoaspis gen. nov. is Luaspis decorosa Peng, Lin, et Chen, 1995.

Acknowledgments We thank Mrs. Chen Yongan and Han Yaojun (405 Geological Team, Hunan Bureau of Geology and Mineral Resources) for their consistent assistance in every field work, and Mr. Zhang Panhua (Hunan Bureau of Geology and Mineral Resources) for cooperation during his tenure of director of 405 Geological Team. This work has been supported by grants from the National Natural Science Foundation of China (NSFC40023002, 40072003), and the Ministry of Science and Technology of China (G99-A-05b) to Peng, and the U.S. National Science Foundation (EAR 0073089 and 0106883) to Babcock.

REFERENCES

EXPLANATIONS OF PLATES

Plate 1. Trilobites from the Taijiangian Stage
Figs. 1, 2. Corynemochus sp. 1, Cranidium, P3.2, x11; 2, pygidium, P3.2, x17.
Figs. 3, 4. Kingstoneia sp. 3, Cranidium, P3.2, x12.5; 4, pygidium, P3.2, x12.
Figs. 5, 6. Corynemochina sp. 5, Cranidium, W3, x12; 6, pygidium, W3, x15
Figs. 7, 8, 13. Sudanomocarina sp. 7, Cranidium, P29, x7, 8, pygidium, P35.5, x8; 13, cranidium, P35.5, x8.
Fig. 9. Honania cf. H. lata Lee. Cranidium, P35.5, x12.
Fig. 12. Changqingia chalcon (Walcott). Cranidium, P37, x10.
Figs. 14, 15. Dorypyge cf. D. richthofeni (Dames). 14, Cranidium, P42.5, x4; 15, pygidium, P42.5, x5.
Fig. 16. Mapania sp. Cranidium, P42.5, x6.
Fig. 17. Amphoton sp. Pygidium, P42.5, x2.5.

Plate 2. Trilobites from the Taijiangian Stage
Figs. 1, 2. Menocepalites sp 1. 1, Cranidium, P68.8, x 15; 2, pygidium, P68.8, x10.
Figs. 3, 4. Anomocarella sp. 3, Cranidium, P42.5, x 5; 4, pygidium, P42.5, x5.
Fig. 5. Paranoecarella? sp. Cranidium, P64.5, x8.
Fig. 6. Solenopleurid, gen. et sp. nov. Cranidium, P45.6, x7.
Figs. 7, 8. Fissanomocarella paibiensis Peng, Lin, et Chen. 7, Cranidium, P82.5, x4; 8, pygidium, P82.5, x2.5.
Fig. 9. Anomocarellid, gen. et sp. nov. Cranidium, P64.5, x6.
Figs. 10, 11. Fuchouia oratolimbata Yang. 10, Cranidium, P64.5, x5; 11, pygidium, P68.8, x3.
Figs. 12, 13. Paranoecarella parallela Yang. 12, Pygidium, P82.5, x5; 13, cranidium, P. 68.8, x6.
Fig. 14. Paranoecarella forts Peng, Lin, et Chen. Pygidium, P82.5, x 6.
Figs. 15, 16. Dorypyge richthofeni (Dames). 15, Cranidium, P45.6, x4; 16, pygidium, P42.5, x5.

Plate 3. Trilobites from the lower part of the Wangcunian Stage
Fig. 1. Menocepalites sp 2. Cranidium, W64.7, x15.
Fig. 2. Menocepalites? sp. 1. Cranidium, P112.6, x7.
Plate 4. Trilobites from the lower part of the Wangcunian Stage

Fig. 1. *Lisia bura* (Walcott). Cranidium, P123.6, x10.

Figs. 2, 4. *Lisia agonius* (Walcott). 2, Cranidium, P123.6, x10; 4, cranidium, P123.6, x12.

Figs. 3, 7, 8. *Lisia yuanjiangensis* (Yang). 3, Cranidium, P132.7, x4; 7, cranidium, P130.5, x6; 8, pygidium, P130.5, x5.

Figs. 5, 6. Papyriaspidid? gen. et sp. nov. 5, Cranidium, P123.6, x4; 6, pygidium, P123.6, x4.

Fig. 9. *Pianaspis sinensis* Yang. Cranidium, P122.4, x5.

Fig. 10. *Prodamesella biserrata* Jell in Jell et Robison. Cranidium, P123.6, x 15.

Fig. 11. Undetermined cranidium. P138.8, x8.

Fig. 12. *Fuchouia* sp. 1. Cranidium, W64.7, x6.

Fig. 13. *Menoccephalites?* sp. 1. Cranidium, P136.7, x8.

Fig. 14. Undetermined cranidium, P126, x4.

Fig. 15. *Fuchouia* sp. 2. Exoskeleton, P99.3, x4.

Plate 5. Trilobites from the middle part of the Wangcunian Stage

Figs. 1, 2. *Meringaspis* sp. 1, Cranidium, P156, x4; 2, pygidium, P156, x3.

Fig. 3. *Fuchouia chiai* Lu. Cranidium, P171.5, x 4.

Fig. 4. *Doropyge* sp. Cranidium, P156, x4.

Fig. 5. *Doropyge dospinosa* Walcott. Pygidium, P167, x4.

Fig. 6. Pteroccephalid gen. et sp. nov. 1. Cranidium, P260, x2.

Fig. 7. Crevicephalid? gen et sp. Cranidium, P240.5, x12.

Fig. 8. *Rhysometopus* sp. Cranidium, P204, x5.

Figs. 9, 11. *Eoshengia subquadrata* Yang. 9, Cranidium, P223.7, x4; 11, pygidium, P223.7, x6.

Fig. 10. *Huzuia longa* Chu. Cranidium, P171, x13.

Figs. 12, 13. *Huayuania subcalva* Peng, Lin et Chen. 12, Cranidium, P201, x5; 13, pygidium, P201, x3.

Fig. 14. *Lisia tungrenensis* Nan. Cranidium, P164.2, x3.5.

Fig. 15. *Prodamesella biserrata* Jell in Jell et Robison. Cranidium, P164.2, x18.

Plate 6. Trilobites from the middle part of the Wangcunian Stage

Figs. 1, 2. *Meringaspis* sp. 1, Cranidium, P184, x3; 2, pygidium, P184.3, x3.

Figs. 3, 4. *Meringaspis latilimbatus* Yang. 3, Cranidium, P240.5, x4; 4, pygidium, P201, x5.

Fig. 5. *Paradamesella nobilis* Lu et Lin. Pygidium, P249, x12.
PENG et al.: ILLUSTRATIONS OF CAMBRIAN POLYMERIODS

Figs. 6, 7. Madarocephalus cf. M. laetus Resser. Cephalon in lateral (6) and dorsal (7) views, P240.5, x25.

Fig. 8. Sudanomocarella sp. Cranium, P200.7, x10.

Fig. 9. Wanshania wanshanensis Rong et Yang in Zhou et al. Cranium, P240.5, x12.

Fig. 10. Blackwelderia sp. Cranium, W132.5, x11.

Fig. 11. Schmalenseea amphionura Moberg. Exoskeleton, P240.5, x7.

Figs. 12, 13. Eoshengia youshiuensis (Yang). 12, Cranium, P240.5, x6; 13, pygidium, P249, x3.

Plate 7. Trilobites from the upper part of the Wangcunia Stage

Fig. 1. Madarocephalus cf. M. laetus Resser. Cephalon, P268.3, x25.

Figs. 2-4. Meringaspsis jimaensis (Yang in Lu et al.). 2, Cranium, P277, x 3; 3, librigena, P277, x3; 4, pygidium, P275.1, x2.

Figs. 5, 6. Fuchouia angusta Yang. 5, Pygidium, P269, x3; 6, cranium, W198.4, x3.

Fig. 7. Paraacidaspis? sp. Pygidium, P261, x5.

Fig. 8. Neoanomocarella asiatica Hsiang in Jegorova et al. Cranium, P261.5, x3.

Fig. 9. Torifera tuma (Yang). Cephalon, P277, x12.

Figs. 10, 11. Pterocephalid gen. et sp. nov. 1. 10, Cephalon, P261.5, x1.5; 11, pygidium, P261.5, x1.5.

Figs. 12, 13. Dorypyge perconvexalis Yang. 12, Cranium, P277, x2; 13, pygidium, P277, x2.5.

Figs. 14, 15. Ajrikina hunanensis (Peng). Cranium in dorsal (14) and anterolateral (15) views, P277, x 20.

Fig. 16. Rhyssometopid gen. et sp. nov. Cranium, P269, x10.

Plate 8. Trilobites from the upper part of the Wangcunia Stage

Fig. 1. Schmalenseeia sp. Exoskeleton, P268.3, x15.

Fig. 2. Damesella sp. Cranium, P277, x 5.

Fig. 3. Chatania sp. Cranium, P282.6, x12.

Figs. 4, 5. Wanshania wanshanensis (Yong and Yang in Zhou et al.). 4, Cranium, P277, x6; 5, pygidium, P277, x3.

Fig. 6. Huzhuia sp. Cranium, P279.6, x6.

Figs. 7, 8. Paradamesella paratypica Yang. 7, Cranium, W198.5, x6; 8, pygidium, P277, x2.5.

Figs. 9, 10. Luyanhaaspis* decorosa (Peng, Lin, et Chen). 9, Cranium, P277, x4; 10, pygidium, P277, x8.

Fig. 11. Neoglaphyraspis nitida Yuan et Yin. Cranium, P277, x15.

Figs. 12, 13. Conocoryphid gen. et sp. nov. Cranium in anterolateral (12) and dorsal (13) views, W199.2, x15.

Figs. 14, 15. Proasaphiscid? gen. et sp. nov. 14, Cranium, P277, x6; 15, pygidium, P277, x6.

Plate 9. Trilobites from the upper part of the Wangcunia Stage

Figs. 1-3. Palaeadotes hunanensis Yang. 1, Cranium, W187.8, x5; 2, pygidium, P287.1, x2.5; 3, cranium, W196.3, x3.

Fig. 4. Anomocarella? gen. et sp. undet. Pygidium, P269, x3.

Figs. 5, 6. Pterocephalid gen. et sp. nov. 1. 5, Cranium, W195.7, x4; 6, pygidium, W196.3, x1.5.

* Luyanhaaspis gen. nov. is a replacement name for Luaspis Peng, Lin, et Chen, 1995 (preoccupied).
Plate 10. Trilobites from the Youshuian Stage

Figs. 1, 2. Distazeris hubeibei Zhu. Cranidium, W211.7, x12.
Figs. 3, 4. Blackwelderia granulosa Endo. Pygidium (composite photograph of part and latex peel of counterpart [CHECK]), P298.5, x4.
Figs. 5, 6. Monkaspis quadrata Yang. 3, Cranidium, P319.6, x2; 6, pygidium, P298.5, x5.
Figs. 7, 8. Monosphaerium obovatum Zhao & Yang. Cranidium, P319.6, x5; 8, pygidium, P298.5, x12.
Figs. 9, 10. Pterocephalid gen et sp. nov. 2. 9, Cranidium, P309, x2; 10, pygidium, P309, x2.
Figs. 11, 12. Teinistion posterocosta (Yang). 12, Cranidium, P317.4, x10; 13, pygidium, P319.8, x8.5.
Figs. 13, 14. Eoshenxia sp. 14, Cranidium, W211.7, x5; 15, pygidium, P298.5, x4.
Figs. 16. Meteroraspis sp. Cephalon, P317.4, x12.

Plate 11. Trilobites from the Youshuian Stage

Figs. 1, 2. Meropalla sp. Cranidium in dorsal (1) and anterolateral (2) views, W212.5, x4.
Figs. 3, 4. Chatiania expensa (Yuan et Yin). 3, Cranidium, W225, x10; 4, pygidium, W225, x15.
Figs. 5, 6. Buttsia globosa Lu et Lin. 5, Cranidium, W223.2, X 15; 6, pygidium, W216.5, x15.
Figs. 9, 10. Distazeris sp. 8, Cranidium, W216.5, x15; 9, pygidium, W216.5, x15.
Figs. 11, 12. Neanomocarella asiatica Hsiang. 10, Cranidium, W221.5, x2.5; 11, pygidium, W221.5, x10.
Figs. 13, 14. Afrikina hunanensis Peng. 15, Cranidium, anterolateral view; W210.5, x9; 16, pygidium, W216.5, x20; 17, cranidium, W216.5, x10.
Figs. 18, 19. Tilifer paraconverx (Yang). 12, 13, cranidium in dorsal (12) and anterolateral (13) views, W227, x10; 14, pygidium, W210, x15.

Plate 12. Trilobites from the Youshuian Stage

Figs. 1, 2. Palaeoedus hunanensis Yang. 1, Exoskeleton, P309, x 5; 9, pygidium, P348, x1.5.
Figs. 5, 6. Protaizheoa subquadrata Peng. 3, Pygidium, P317.4, x3; 4, cephalon, P322.5, x3.8; 10, librigena, P319.8, x 5.
Figs. 7, 8. Paradamesella typica Yang. 7, Cranidium, P325.7, x4; 8, pygidium, P348, x2.
Plate 13. Trilobites from the Youshuiyan Stage
Figs. 1, 2. _Liostracina bella_ Lin et Zhou. 1, Cranidium, P317.4, x10; 2, pygidium, P346.7, x15.
Figs. 3, 4. _Chatania cf. C. chatianensis_ Yang. 3, Cranidium, P337.5; 4, pygidium, P341.8, x6.
Figs. 5, 6. _Blackwelderia_ sp. 5, Cranidium, W227, x5; 6, pygidium, P337.5, x3.
Fig. 7. _Gaoloupingia gaoloupingensis_ Yuan et Yin. Cranidium, P332, x20.
Figs. 8, 9. _Rhysometopus zhongquensis_ Zhou. 8, Cranidium, P348, x4; 9, pygidium, P348, x5.
Figs. 10-12. _Prodamesella punctata_ Ergaliev. 10, Cranidium, P319.6, x12; 11, partial thorax and pygidium, P319.6, x14; 12, pygidium, P319.6, x15.
Fig. 13. _Paraacidaspis hunanica_ Jegorova. Pygidium, P332, x2.
Fig. 14. _Pseudomapania cylindrica_ Yuan et Yin. Cranidium, W211.7, x16.
Figs. 15, 16. _Luyanhaaspis_ sp. nov. Cranidium in lateral (15) and dorsal (16) views, P326.9, x 4.
Fig. 17. _Adelogonus_ cf. _A. typica_ (Yuan et Yin). Cranidium, P332, x2.

Plate 14. Trilobites from the Youshuiyan Stage
Figs. 1-4. _Chiawangella_ cf. _C. pacifica_ (Walcott). 1, 2, Cranidium in dorsal (1) and anterolateral (2) views, W227, both x7; 3, pygidium, posterolateral view, Pβ-2.75, x5; 4, pygidium, W227, x15.
Fig. 5. _Wanshania wanshanensis_ Yong et Yang. Cephalon, P316, x4.
Figs. 6, 7, 16. _Pseudoyuepingia laochatianensis_ Yang. 6, Cranidium, P353.7, x8; 7, pygidium, P353.7, x7; 16, pygidium, P353.7, x20.
Figs. 8, 9. _Fenghuangella coniforma_ Yang. 8, Cranidium, W254.1, x28; 9, cranidium, W254.1, x28.
Fig. 10. _Fenghuangella liostracinula_ Yang. Cranidium and partial thorax, W251.2, x19.
Fig. 11. _Adelogonus?_ sp. Cranidium, W227, x6.
Figs. 12, 13. Shumardioid gen. et sp. nov. Cranidium in anterolateral (12) and dorsal (13) views, W243, x20.
Fig. 14. Undetermined pygidium, W219.7, x15.
Fig. 15. Undetermined meraspis, W219.7, x25.

Plate 15. Trilobites from the Waergangian Stage
Fig. 1. _Placosema_ sp. Cranidium, P374.9, x7.
Fig. 2. _Ptychoparioid gen. et sp. nov._ Cranidium, P376, x8.
Fig. 3. _Monkaspid gen. et sp. nov._ Cranidium, P363.5, x10.
Fig. 4. _Meteroraspis_ sp. Cranidium, Pβ70.7, x8.
Figs. 5, 6. _Fenghuangella_ sp. 5, Cranidium, P378.3, x20; 6, cranidium, P378.3, x20.
Figs. 7, 8. _Shengia trapezia_ Peng. 7, Cranidium, P378.3, x3; 8, pygidium, P378.3, x3.
Figs. 9-11. _Paraacidaspis hunanica_ Jegorova. 9, Cranidium, P378.3, x2; 10, cranidium, 378.3, x8; 11, pygidium, Pβ26, x2.5.
Fig. 12. _Stigmatoa yangziensis_ Yang. Cranidium, Pβ56.5, x3.
Fig. 13. _Olenus ausi/triacus_ Yang. Exoskeleton, Pβ56.5, x2.6.

Plate 16. Trilobites from the Waergangian Stage
Figs. 1, 7, 8, 9. _Baikadamaspis_ sp. nov. 2. 1, Cranidium, Pβ5.1, x12; 7, 8, cephalon in anterolateral (7) and dorsal (8) views, Pβ5.1, x10; 9, pygidium, Pβ5.1, x12.
Fig. 2. Huzhuia sp. Cranidium, Pβ 5.1, x15.
Fig. 3. Olenid gen. et sp. nov. Cranidium, Pβ 60.3, x10.
Figs. 4-6. Chuangia austriaca Yang. 4, 5, Cranidium in dorsal (4) and anterolateral (5) views, Pβ 26, x6; 6, pygidium, Pβ 23.5, x4.
Figs. 10, 11. Prochuangia granulosa Lu. 10, Cranidium, Pβ 60.3, x10; 11, pygidium, Pβ 70.7, x3.
Figs. 12, 13. Shengia quadrata Hsiang in Jegorova et al. 12, Pygidium, Pβ 70.7, x8; 13, cranidium, Pβ 70.7, x4.
Fig. 14. Proceratopyge fenghuangensis Hsiang in Jegorova et al. Exoskeleton, Pβ 60.3, x3.5