Recently, Dr. Huang Bing et al from Nanjing Institute of Geology and Palaeontology Chinese Academy of Sciences and Denmark published the latest research achievements on “Lilliput effect” of brachiopod faunas of South China following the terminal Ordovician mass extinction in Palaeogeography, Palaeoclimatology, Palaeoecology.
In the immediate aftermath of global extinctions, organisms were normally much smaller than those prior to these events. This ‘Lilliput Effect’ can be subdivided into two types: 1) a specific type, following the original definition of the effect which targets species-level taxa associated with inhospitable environments, and 2) a more general type, related to the reactions of higher-rank taxa above the species-level. The body sizes of brachiopods from South China through the Ordovician and Silurian transition (Late Katian, Hirnantian, and earliest Rhuddanian) are compared at generic, superfamilial, ordinal, and class levels. The results indicate that the body sizes of the taxa of lower rank (e.g. genus-level) are highly variable within these different intervals. The type of evidence for the Lilliput Effect through the end Ordovician mass extinction is thus quite different from that of the end Permian mass extinction probably reflecting differences in the intensity of these two major bioevents. However, the relationships between the contrasting trends in body-size change of some taxa of higher rank (e.g. at the ordinal-level) and the relative dominance of these taxa in the latest Ordovician and earliest Silurian suggest that the brachiopods of the two major Ordovician groups, the strophomenoids and orthoids, adopted different survival strategies during and immediately after the crisis from those of the pentamerides and rhynchonellides, that were common in Silurian assemblages.
Huang Bing, David A.T. Harper, Zhan Renbin and Rong Jiayu. 2010. Can the Lilliput Effect be detected in the brachiopod faunas of South China following the terminal Ordovician mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology, Volume 285, 277-286.
Download: