• A tale of three taphonomic modes of the Ediacaran Fossil Flabellophyton
    The Ediacara biota (580–541 Ma) documents an important evolutionary episode just before the Cambrian explosion and marks the first appearance of macroscopic and complex multi-cellular life. Most Ediacara-type fossils were preserved as casts and molds in sandstone successions, but several recent studies have shown that some taxa of the Ediacara biota can also be preserved as casts and molds in carbonate successions or as carbonaceous.
      The Ediacara biota (580–541 Ma) documents an important evolutionary episode just before the Cambrian explosion and marks the first appearance of macroscopic and complex multi-cellular life. Most Ediacara-type fossils were preserved as casts and molds in sandstone successions, but several recent studies have shown that some taxa of the Ediacara biota can also be preserved as casts and molds in carbonate successions or as carbonaceous. In addition, and some of these taxa also extend to the early Ediacaran Period. Various Ediacaran strata in South China, including black shales in the Doushantuo/Lantian Formation and limestones in the Shibantan Member of the Dengying Formation, are known to preserve Ediacara-type fossils and they offer an opportunity to broaden our view of the stratigraphic, environmental, and taphonomic distributions of the Ediacaran macrofossils.
      Recently, Dr. WAN Bin, and other members of the Innovative Research Group on ‘Origin and early evolution of multi-cellular life from Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS), collaborated with researchers from Virginia Tech and University of California at Riverside of USA, and Birbal Sahni Institute of Palaeosciences of India discovered a common Ediacara-type fossil Flabellophyton among the Lantian and Shibantan biotas form South China and Ediacara biota form South Australia. This study was recently published as Focus review on the Gondwana Research,
      Flabellophyton was the representative genus of early Ediacaran Lantian biota (635-580 Ma) preserved as carbonaceous compressions in black shales of the Lantian Formation, and later was founded from the Ediacara biota (560-550 Ma) form South Australia preserved as casts and molds in the Ediacara Sandstone. Recently, it was discovered from the Shibantan biota (550-539 Ma), and preserved as casts and molds in the Shibantan Limestone of the Dengying Formation. This discover makes Flabellophytonthe only genus that occurs in all three taphonomic modes.
      In this study, they provided a systematic description of Flabellophyton based on material from the Lantian and Dengying formations in South China, recognizing three morphospecies—F. lantianense, F. typicum sp. nov., and F. obesum sp. nov. Based on morphological and structural characters, Flabellophyton is reconstructed as an erect epibenthic marine organism attached to sandy, carbonate, and muddy substrates. Its phylogenetic affinity remains ambiguous though it was historically interpreted as an algal fossil.
      Flabellophyton occured in all three taphonomic modes, allowing comparative ecological and taphonomic analyses. First, taphonomic analysis of Flabellophyton indicates that multiple taphonomic pathways can facilitate the preservation of Ediacaran macrofossils. In particular, the precipitation of authigenic minerals such as pyrite, clay minerals, calcite, and possibly silica may have contributed to the preservation of Flabellophyton in a certain degree of three-dimensionality. Second, environmental factors such as water depth, sediment substrates and redox conditions exert a strong control through taphonomic and/or paleoecological processes of Flabellophyton. The wide geographicand environmental distribution of Flabellophyton points to an unusual capability of Flabellophyton to evolutionarily adapt to different environments. Third, as a window into Ediacaran paleoecology, Flabellophyton and other Ediacaran fossils played a crucial role in the construction of epibenthic communities in Ediacaran oceans, and helps to understand the ecologicalmigration and evolutionary expansion from deeper to shallower oceans during the Ediacaran Period.
      This research was jointly supported by the the National Natural Science Foundation of China, Strategic Priority Research Program (B) and Major program of the Chinese Academy of Sciences, China and SKLPS State Key Lab Funding of NIGPAS, and National Geographic Society of USA.
      Article reference:Bin Wan, Zhe Chen, Xunlai Yuan, Ke Pang, Qing Tang, Chengguo Guan, Xiaopeng Wang, S. K. Pandey, Mary L. Droser and Shuhai Xiao. 2020. A Tale of Three Taphonomic Modes: The Ediacaran Fossil Flabellophyton Preserved in Limestone, Black Shale, and Sandstone. Gondwana Research 84: 296-314. https://doi.org/10.1016/j.gr.2020.04.003
      Stratigraphic columns, representative specimens, and morphological reconstruction of Flabelloophyton from the early Ediacaran Lantian biota(635-580 Ma)and late Ediacaran Shibantan biota(551-539 Ma)of South China, and Middle-late Ediacaran Ediacara biota (560-550 Ma) of Australia
      Paleoecological reconstruction of Flabellophyton from the early Ediacaran Lantian biota, showing a Flabellophyton community on early Ediacaran ocean floor
    2020-06-09
  • Jurassic Ginkgoalean plant fossils reveal the effects of reconstructing paleo-atmospheric CO2 concentration
    The increase of atmospheric carbon dioxide concentration (pCO2) is widely regarded as the main factor leading to global warming. Therefore, reconstructing the atmospheric CO2 concentration during the geological history has important reference significance for humans to predict the future global climate trend. The inverse relationship between concentrations of CO2 in the atmosphere (pCO2) and the stomatal index of vascular plant has been widely used to estimate ancient levels of atmospheric CO2. However, some atmospheric concentration of CO2 in the geological past (paleo-CO2) estimates show little congruence because they are derived using different correlative methods, or from different fossil plant species with different calibration approaches.
      The increase of atmospheric carbon dioxide concentration (pCO2) is widely regarded as the main factor leading to global warming. Therefore, reconstructing the atmospheric CO2 concentration during the geological history has important reference significance for humans to predict the future global climate trend. The inverse relationship between concentrations of CO2 in the atmosphere (pCO2) and the stomatal index of vascular plant has been widely used to estimate ancient levels of atmospheric CO2. However, some atmospheric concentration of CO2 in the geological past (paleo-CO2) estimates show little congruence because they are derived using different correlative methods, or from different fossil plant species with different calibration approaches.
      Recently, an international research team leading by Prof. WANG Yongdong from the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS), Dr. ZHOU Ning from the Department of Geology of Northwest University, China and Prof. Jennifer McElwain from the Trinity College Dublin, the University of Dublin, Ireland published a new report in the international journal Palaeogeography, Palaeoclimatology, Palaeoecology about inter-comparison study of three stomatal-proxy methods for CO2 reconstruction applied to early Jurassic Ginkgoales plants.
      Researchers applied three methods, including the empirical method of McElwain (1998), the empirical method of Barclay and Wing (2016) and the mechanistic method of Franks et al., (2014) to a single fossil Ginkgo species (Ginkgoites marginatus) to track and assess their consistency of pCO2 estimates for the Early Jurassic. By using an inter-comparison of three methods, a high degree of consistency in pCO2 estimates and trends had been observed in two empirical proxy methods. In addition, the mechanistic method and both the empirical methods also showed generally good consistent paleo-CO2 estimates at the bed-level. To test the congruence of paleo-CO2 estimates, they also applied all three methods to one additional Ginkgoalean fossil species (Sphenobaiera huangii). All three methods showed species-dependent uncertainty in paleo-CO2 estimates when applied to different Ginkgalean fossil species collected from the same fossiliferous bed. Moreover, considering the potential effect of guard cell size to the mechanistic method, the genome size of fossil and living Ginkgo taxa was analyzed based on the significant positive relationship between genome size and guard cell size.
      In addition, the continuous variation curve of pCO2 in the early Jurassic in southern China was reconstructed by the three models, it showed that the CO2 concentration is 900–1400 ppm. This result agreed with the values of the early Jurassic pCO2 using the other plant stomatal parameter method and the geochemical models. It is thus demonstrated that the late Early Jurassic (dated about 180 Ma) was characterized by a greenhouse climate condition with global warming and oceanic anoxic events.
      This study was jointly supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences, the National Natural Science Foundation of China, State Key Programme of Basic Research of Ministry of Science and Technology, China and SKLPS State Key Lab Funding of NIGPAS.
      Article reference:Zhou Ning, Wang Yongdong*, Li Ya, Porter Amanda, Kürschner Wolfram, Li Liqin, Lu Ning, McElwain Jennifer*, 2020. An inter-comparison study of three stomatal-proxy methods for CO2 reconstruction applied to early Jurassic Ginkgoales plants. Palaeogeography, Palaeoclimatology, Palaeoecology, 542, 109547. https://doi.org/10.1016/j.palaeo.2019.109547
      Two fossil ginkgoalean plants from the Early Jurassic in western Hubei and their epidermal structures and stomatal distribution(left, Ginkgoites; right, Sphenobaiera)
      Comparisons of paleo-CO2 estimates using three stomatal-proxy methods. (Red indicates empirical method of Barclay and Wing (2016) ; Blue indicates empirical method of McElwain (1998); and Blue indicates mechanistic method of Franks et al., (2014))
      The estimated genome size from guard cell data of fossil Ginkgoites and Sphenobaira and living Ginkgo from South China and East Greenland
      Estimated paleo-CO2 values during Early Jurassic obtained from three methods (blue, red and green box), and comparison with other paleo-CO2 estimates based on the stomatal ratios of plant fossils and geochemical models
    2020-05-28
  • Deep-water dissolved iron cycling and reservoir size across the Ediacaran-Cambrian transition

      The majority of the deep ocean was likely under ferruginous conditions during the first four billion years of Earth’s history. As the atmosphere was gradually oxygenated, the sources, sinks, redox cycling, and reservoir size of dissolved iron in the deep ocean are likely to have changed dramatically. Whether deep water was thoroughly oxygenated by the time of the Ediacaran-Cambrian transition, and the relationship of this oxygenation to the Cambrian explosion, remains debated.
      To explore the degree of oceanic oxygenation and its effect on Cambrian explosion, a research team, composed of Dr. XIANG Lei, Prof. ZHANG Hua and Prof. CAO Changqun from the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, and collaborators from the University of West Carolina, the University of Science and Technology of China and Nanjing University, measured the iron isotopic composition (δ56Fe) of bulk rock (i.e., cherts and mudstones/shales) through the Piyuancun and Hetang formations, using samples collected from the Chunye-1 core, on the Lower Yangtze Block in western Zhejiang. The limited variation in δ56Fe values (<0.7‰) and low FeT/Al ratios (<0.77) in euxinic samples show that the deep-water Fe2+ reservoir was quite limited, and likely similar to that of the modern ocean, during the latest Ediacaran and Cambrian Stages 1-3.
      Iron isotope results, combined with published data from sections on the Middle and Upper Yangtze Block, record a general decline in seawater δ56Fe values from >0.55‰ during the end-Ediacaran and Cambrian Stages 1-3 to <0‰ during Cambrian Stage 4. Seawater δ56Fe values in the lower and middle Hetang Formation range between 0 and 0.2‰, suggesting that the riverine dissolved and suspended flux and/or aeolian dust was the predominant source of highly reactive iron to the deep basin. Positive deep-water δ56Fe values, above 0.55‰ during the terminal Ediacaran and Cambrian Stages 1-3, likely reflect a basin where pyritization, rather than oxidation, was the predominant sink for deep-water ferrous Fe. Thus, researchers infer that only the shallow water was sufficiently oxygenated to support complex metazoans and the evolutions of skeletons, and that atmospheric oxygen levels were not high enough to directly oxygenate deep water environments during the Cambrian explosion.The research results have been published online in the international geology journal Chemical Geology. And this research was supported by by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences and the National Natural Science Foundation of China.
      Reference: Xiang, L., Schoepfer, S.D., Zhang, H., Chen, Z.W., Cao, C.Q., Shen, S.Z., 2020. Deep-water dissolved iron cycling and reservoir size across the Ediacaran-Cambrian transition. Chemical Geology, 541: 119575. https://doi.org/10.1016/j.chemgeo.2020.119575
      Iron isotope and iron composition data in Chunye 1 core
    2020-05-27
  • Polybessurus-like fossils contribute to the Permian-Triassic boundary microbialites in South China
    The end-Permian mass extinction is the greatest life crisis during the Phanerozoic, which eliminated more than 90% species in the marine realm, resulting in widespread development of microbialites for the dramatical decrease of grazing pressure and bioturbation. Common occurrence of microbialites is the feature of the Precambrian strata, so the widespread microbialites near the Permian-Triassic boundary is regarded as an anachronistic facies, which indicates a primitive ecosystem similar to that of the Precambrian after the end-Permian mass extinction.
      The end-Permian mass extinction is the greatest life crisis during the Phanerozoic, which eliminated more than 90% species in the marine realm, resulting in widespread development of microbialites for the dramatical decrease of grazing pressure and bioturbation. Common occurrence of microbialites is the feature of the Precambrian strata, so the widespread microbialites near the Permian-Triassic boundary is regarded as an anachronistic facies, which indicates a primitive ecosystem similar to that of the Precambrian after the end-Permian mass extinction. 
      Although lots of studies have been performed on the Permian-Triassic boundary microbialites (PTBMs), these works mainly focused on stratigraphy, morphology, structures and macro-/microfossils of the PTBMs. We still know little about the microbes constructing the PTBMs, because on the one hand microbes can hardly be mineralized to fossils, and on the other hand the PTBMs were commonly undergone intense diagenesis, making the preservation and identification of microbe fossils more difficult. 
      Recently, Dr. ZHENG Quanfeng, Prof. LI Yue and ZHANG Hua from the Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, collaborating with researchers from South China Sea Institute of Oceanology of Chinese Academy of Sciences and Nanjing University, made a comprehensive study on the PTBMs from 8 localities in South China. The research results have been published in the international journals Palaeogeography Palaeoclimatology Palaeoecology.
      Their study found that a specific type of microbe fossils with high abundance and low diversity commonly occurred in the PTBMs of South China. This microbe fossil comprises a laminated stalk and an endpoint spheroid. The spheroid is about 20-40 μm across, composed of micritic magnesian calcite/dolomite wall and calcite spar infillings. The laminated stalk, generally several to hundreds of microns, consists mainly of multiple “stacked-cup” laminae of micron-sized magnesian calcites/dolomites. Calcite microspars and spars can fill the inter-laminae spaces. This microbe fossil is very similar to the Precambrian benthic cyanobacteria fossil Polybessurus bipartitus in morphology. And a modern morphological counterpart, which is also a cyanobacterial benthos, is living in coastal Bahamian environments. So we tentatively named this microbe fossil as Polybessurus-like, and interpreted it as the calcified remains of a benthic unicellular coccoid cyanobacteria and its extracellular polymeric substances (EPS). These coccoid cyanobacteria secreted EPS unidirectionally to form laminated stalks, through which they can not only attach to the substrate in the coastal shallow marine, but also lift themselves upward, both of which can make these cyanobacteria get more sunlight for photosynthysis. Polybessurus-like fossils are the key contributors to the PTBMs. With different growth patterns of Polybessurus-like fossils, different morphotype PTBMs formed, including stromatolites, thrombolites and dentrolites.
      This study revealed the main microbe contributors to the PTBMs of South China, as well as formation mechanisms of different morphotype PTBMs. The results also present us a picture of the microbial biota in the coastal marine environments on carbonate platforms near the equator during the Permian-Triassic interval, which has great significance to our knowledge about the marine ecosystem after the end-Permian mass extinction. 
      This work was supported by the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences, the Strategic Priority Research Program of Chinese Academy of Sciences and the National Natural Science Foundation of China. 
      Reference: Zhang, X.Y., Zheng, Q.F.*, Li, Y., Yang, H.Q.*, Zhang, H., Wang, W.Q., Shen, S.Z., 2020. Polybessurus-like fossils as key contributors to Permian-Triassic boundary microbialites in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 552: https://doi.org/10.1016/j.palaeo.2020.109770.
      Lithological columns of the studied sections
      Outcrop photos of the studied Permian–Triassic boundary sections
      Polished slabs of microbe-bearing microbialites in the studied sections
      Microphotographs and line drawings of microbe fossils in the PTBMs of the South China
      SEM photos of microfossils in the PTBMs of the South China
      SEM images and EDS analysis results of microbe fossils in the PTBMs of South China
    2020-05-25
  • U-Pb age revealing oldest-known forest and FFB in West Junggar
    As one of the five major extinction events in Earth history, the Frasnian-Famennian boundary (FFB) crisis caused dramatic reductions in marine and terrestrial diversity. The effects of this event on terrestrial ecosystems are not well understood due to the limited preservation of terrestrial sedimentary rocks and the relative scarcity of plant fossils. Besides, the stratigraphic position of the FFB remains tentative.
      As one of the five major extinction events in Earth history, the Frasnian-Famennian boundary (FFB) crisis caused dramatic reductions in marine and terrestrial diversity. The effects of this event on terrestrial ecosystems are not well understood due to the limited preservation of terrestrial sedimentary rocks and the relative scarcity of plant fossils. Besides, the stratigraphic position of the FFB remains tentative.
      In the past years, and Prof. XU Honghe, the group members of from the ‘Modern terrestrial ecosystem origin and early evolution’ of Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, and Dr. ZHENG Daran from The University of Hong Kong, has made detailed investigations for several Devonian terrestrial outcrops in West Junggar, northwestern China. Related results were published online in the international geoscience journal Palaeogeography, Palaeoclimatology, Palaeoecology.
      They provide a robust zircon U-Pb age (371.5 ± 0.9 Ma; earliest Famennian) for a new fossil assemblage containing Lycopsida, Archaeopteridales, and Cladoxylopsida from the upper Zhulumute Formation of the West Junggar Basin, NW China. These taxa are typical arborescent plants of the Late Devonian and represent the oldest-known forest in China, documenting afforestation in West Junggar coevally with or just after the Upper Kellwasser event (~372 Ma). The new U-Pb ages generated in this study refine the placement of the FFB in West Junggar to within the Zhulumute Formation, instead of the Hongguleleng Formation as previously thought.
      In the study area, the Upper Devonian Zhulumute Formation contains at least three types of potentially forest-forming plants: the arborescent lycopsid L. rhombicum, the archaeopteridalean progymnosperms C. trifilievii and C. newberryi, and the cladoxylopsid X. lignescens. Although the floral assemblages of the lower Famennian Zhulumute Formation do not represent in-situ growth, the presence of abundant arborescent taxa is inferred to represent the earliest known forest in the West Junggar region. These fossil assemblages show the same taxonomic composition as those confidently ascribed to Late Devonian forest ecosystems elsewhere globally.
      It is significant that the early Frasnian Hujiersite and early Famennian Zhulumute floras contain no duplicate members. The elevation differences probably cause the different components of two floras. The present radiometric results constrain this floral transition to a ~9 to 11-Myr window between the Hujiersite Flora (maximum depositional ages 382.4 ± 1.0 Ma to 380.4 ± 1.1 Ma and the Zhulumute Flora (maximum depositional age 371.5 ± 0.9 Ma). Thus, our results are permissive of the possibility that this transition, although not tightly age-constrained, coincided with the Upper Kellwasser Event (~372-374 Ma).
      In West Junggar, the stratigraphic position of the FFB remains tentative. The FFB was controversially interpreted to occur in the lower part of the marine Hongguleleng Formation. Numerous studies have debated the age of the Hongguleleng Formation. Its conodont biostratigraphy has been interpreted as Famennian, late Frasnian–Famennian, or Famennnian–Tournaisian in age. At Bulongguoer, the FFB was placed 2.7 m above the base of the marine Hongguleleng Formation, but not without controversy. At Saerba, the 371.5 U-Pb ages of the present study favor FFB placement within the Zhulumute Formation. Strata of the upper Zhulumute Formation at Bulongguoer and Saerba are considered to be correlative based on similar lithologies and finds of Leptophloeum rhombicum and Callixylon newberryi. This interpretation differs from long-held interpretations regarding placement of the FFB in NW China. Specifically, our age data indicate that the FFB is present in the terrestrial Zhulumute Formation and not within the marine Hongguleleng Formation.
      Together with paleontological evidence, this new chronostratigraphic constraint indicates that forest development occurred synchronously with or immediately following the Upper Kellwasser crisis in West Junggar. These findings are consistent with the possibility of a major floral turnover at the FFB, although further investigation will be required to test this hypothesis.
      This research was supported by the Strategic Priority Research Program of Chinese Academy of Sciences, the HKU Seed Fund for Basic Research, and National Natural Science Foundation of China.
      Reference: Zheng, D.R., Chang, S.C. *, Algeo, T., Zhang H.C., Wang, B., Wang, H., Wang, J., Feng, C.Q., Xu, H.H.*, 2020. Age constraint for an earliest Famennian forest and its implications for Frasnian-Famennian boundary in West Junggar, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 552, 109749. https://doi.org/10.1016/j.palaeo.2020.109749
      Figure 1. Field photo of the Saerba Section of the Zhulumute Formation in West Junggar, Xinjiang, China
      Figure 2. The turn-over and the geological ages of the Middle to Late Devonian flora of West Junggar, Xinjiang, China
      Figure 3. Representative Frasnian-Famennian fossil plants in West Junggar, Xinjiang, China
    2020-05-21
  • A series of studies on the late Ordovician Hirnantia brachiopod Fauna
      Between two phases of the Late Ordovician mass extinction, Hirnantia Fauna developed globally, and world widely reported except that from Sibumasu Terrane, which now consists of Myanmar, peninsular Malaysia, western Thailand, Sumatra and parts of western Yunnan of China. The Terrane is geographically important, however, the features of Hirnantia Fauna from which and its relationship to South China have long been unclear. Since Reed firstly reported fossils from northern Shan State, Myanmar in 1915, there has been only one relevant paper (with only 9 brachiopods), and the information about western Yunnan is only recorded in one abstract.
      Between two phases of the Late Ordovician mass extinction, Hirnantia Fauna developed globally, and world widely reported except that from Sibumasu Terrane, which now consists of Myanmar, peninsular Malaysia, western Thailand, Sumatra and parts of western Yunnan of China. The Terrane is geographically important, however, the features of Hirnantia Fauna from which and its relationship to South China have long been unclear. Since Reed firstly reported fossils from northern Shan State, Myanmar in 1915, there has been only one relevant paper (with only 9 brachiopods), and the information about western Yunnan is only recorded in one abstract.
      Recently, Academician RONG Jiayu, Prof. ZHAN Renbin, Prof. HUANG Bing and CHEN Di (RA) from Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, collaborated with Dr. Kyi Pyar Aung from Taunggyi University, Myanmar and Prof. David Harper from Durham University, Britain, studied Hirnantia Faunas from Hwe Mawng purple shale Member, Naungkangyi Group, Mandalay of Myanmar, Wanyaoshu Formation, Mangshi of western Yunnan, and Kuanyinqiao Bed, Meitan, of Guizhou (South China). A series of papers have been published, with 23 genera and 23 species of brachiopods from Mandalay, Myanmar, 22 species of 22 genera from western Yunnan, and 13 species of 13 genera from northern Guizhou were identified. Among them, Hirnantia itself was recorded from Myanmar for the first time, and a new systematical argument to some key taxa was put forward. In addition, Xenocrania, a new genus of Craniid brachiopod was established, and the synonyms for some core taxa of the fauna were revised. These systematic works provide a real basis for global summary in the future. More importantly, based on the classification information, with data from global relevant literatures and fossil materials, the studies revealed some facts in paleobiogeography, community ecology, and population ecology and variation as follows.
      Paleobiogeography:
      Based on the comparison of common and core taxa of the Hirnantia Fauna in Sibumasu Terrane and South China, the network analysis method is adopted to prove close relationship between them. The comparative study of Hirnantia Faunas from the Sibumasu Terrane and its adjacent blocks shows that the former was not far away from the south China plate and the Lhasa terrains, and they were all in the shallow tropical waters during the latest Ordovician. The Hirnantia Faunas from Sibumasu and South China with such a high diversity at the end of the Ordovician are very rare, shows their global importance. Brachiopod studies revealed the complex climatic differentiation from low latitude to high latitude during global cooling process in the late Ordovician. The origin and extinction of this global benthic fauna dominated by opportunistic is the important signal of the first and second phases of the major event respectively.
      Community ecology:
      The kinella-Paromalomena Association, which lived in deeper water (lower part of BA3, closer to BA4), was recognized based on the information of bathymetric indicator taxa together with data of both diversity and abundance of the Hirnantia Fauna in the Mandalay Division, Myanmar. However, The Hirnantia-Eostropheodonta Association in Meitan, Guizhou province lived in a relatively shallow water environment (BA2 to upper part of BA3). These two assemblages showed obvious differences in many features, as key taxa, composition and diversity. The materials in western Yunnan collected from the Wanshuyao Formation, which was significantly thicker than most of the Kuanyinqiao bed. Studies on brachiopods from 7 bottom up layers, two sets of associations (both including key taxa of Hirnantia Fauna, such as Hirnantia), the Fardenia-Hirnantia association (lower) and the Aegiromena-Anisopleurella association (upper). They belong to the typical shallow-water and deep-water Hirnantia Fauna respectively. There were significant differences in diversity, abundance and body size distribution between the two associations. The ecological succession of community from shallow water to deep water reflected the complexity and evolution of global glacial climate and Marine environment. The deglaciation process of the second pulse of the end-Ordovician mass extinction, was confirmed by the succession of brachiopod community.
      Population ecology and variation:
      Hirnantia, nominated the Fauna, is the most important taxon in the Hirnantia fauna, but its species assignment has been controversial. Based ondata from South China and other regions in the world for H. sagittifera, the type species of the genus from representative, the measurements and statistics of the key characters confirmed the significant and extensive variation in H. sagittifera. Six species (including two morpho-types) published previously were all proved to be the synonym of H. sagittifera.
      Based on materials difficult to identify from Myanmar, South China and other regions, a new genus Xenocrania was established, with its type species Palaeocyclus? haimei Reed (originally described as a coral) from the Hirnantia Fauna in northern Shan State, Myanmar. They found drastic variation of ornamentation of this genus. Three types of ornamentation are recognized within the same population of this species, and even on the same individual. This significant phenotypic pleiotropy was considered may be the response to the strong ecological pressure during the bio-event, in order to improve its probability of survival from the deteriorating environment.
      Financial supports for this work were provided by the Strategic Priority Research Program of Chinese Academy of Sciences, and the National Natural Science Foundation of China. The research results have been published recently in the journals Palaeoworld, Papers in Palaeontology, Journal of Paleontology, Lethaia and others. 
      Publications information:
      Rong Jiayu, Aung K P, Zhan Renbin, Huang Bing, Harper D A T, Chen Di, Zhou Hanghang, Zhang Xiaole, 2020. The latest Ordovician Hirnantia brachiopod Fauna of Myanmar: Significance of new data from the Mandalay Region. Palaeoworld, 29: 1–30.
      Huang Bing, Zhou Hanghang, Harper D.A.T., Zhan Renbin, Zhang Xiaole, Chen Di, Rong Jiayu. 2020a. A latest Ordovician Hirnantia brachiopod fauna from western Yunnan, Southwest China and its paleobiogeographic significance. Palaeoworld, 29: 31–46.
      Huang Bing, Rong Jiayu, Harper D.A.T., Zhou Hanghang. 2020b. A nearshore Hirnantian brachiopod fauna from South China and its ecological significance. Journal of Paleontology, 94(2): 239–254.
      Huang Bing, Harper D.A.T., Zhou Hanghang, Rong Jiayu. 2020c. From shallow to deep-water: an ecological study of the Hirnantia brachiopod Fauna (Late Ordovician) and its global implications. Lethaia, doi.org/10.1111/LET.12360.
      Chen Di,Rong Jiayu. 2019. A new craniid brachiopod genus from the terminal Ordovician Hirnantia fauna of Myanmar and South China. Papers in Palaeontology, 5(3): 521-535.
      Fig. 1. Paleogeographic map displaying the positions of Sibumasu Terrane and other blocks; Network Analysis for Hirnantia Fauna demonstrates the close relationship between these blocks
      Fig. 2. Diversity and abundance curves for the Hirnantia Fauna from western Yunnan
      Fig. 3. Phenotypic pleiotropy of new genus Xenocrania, all are the same species
      Fig. 4. PCA shows significant variation of the type species of Hirnantia; 6 species were revised
      Fig. 5. Representative brachiopods of the Hirnantia Fauna of Myanmar (left) and western Yunnan (right)
    2020-05-07
  • Research progress on sedimentary geology of Mesoproterozoic strata in the Helan Mountains
      The Mesoproterozoic interval postdates the Great Oxidation Event, and is considered to be an interval of relative stasis in terms of global tectonics, climate states, and marine geochemical conditions, particularly with regard to the low variance of carbon isotopes. As a result, this interval is referred to as the “boring billion”, although the biosphere changed considerably during this time with the evolution of red and green algae, fungi, and calcifying cyanobacteria. In addition, stromatolite abundance and diversity in the oceans more than doubled in the Mesoproterozoic. The “boring billion” may be, in fact, not “boring”, which attracts persistent studies.
      The Mesoproterozoic interval postdates the Great Oxidation Event, and is considered to be an interval of relative stasis in terms of global tectonics, climate states, and marine geochemical conditions, particularly with regard to the low variance of carbon isotopes. As a result, this interval is referred to as the “boring billion”, although the biosphere changed considerably during this time with the evolution of red and green algae, fungi, and calcifying cyanobacteria. In addition, stromatolite abundance and diversity in the oceans more than doubled in the Mesoproterozoic. The “boring billion” may be, in fact, not “boring”, which attracts persistent studies.
      Prof. CHEN Jitao from Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS) started working on Mesoproterozoic from 2014 when he was invited twice by A. Knoll and J. Grotzinger toattend the Agouron Field School of Geobiology and collaborative research in Van Horn area, Texas.
      Recently, CHEN Jitao together with his colleagues from NIGPAS and US have been working on the well-preserved Mesoproterozoic strata of the Helan Mountains in the western margin of the North China Block (NCB). Based on their integrated works, they (1) reconstruct of the depositional history of a coarse redbed succession, (2) analyze a diverse suite of carbonate facies that include remarkably well preserved stromatolitic assemblages, (3) provide carbon and oxygen isotopic profiles for these strata, (4) present the first recovery of trilobites from Cambrian strata at this site that demonstrate the very specific age of the overlying strata, and (5) provide detrital zircon geochronological data for a suite of samples collected from Paleoproterozoic basement, Mesoproterozoic strata, and overlying Cambrian rocks.
      The study suggests the significant spatial distribution of approximately age-equivalent strata of the Mesoproterozoic Wangquankou carbonate in the NCB were most likely deposited on stable carbonate platform, rather than in an aulacogen. Carbonate carbon isotopes and detrital zircon ages provide a maximum depositional age of ~1610 Ma and prior to 1000–1200 Ma for the Wangquankou Formation. Detrital zircon geochronologic data also show a consistent provenance throughout the Mesoproterozoic section, and for both Middle Cambrian and Middle Ordovician strata, which could suggest a remarkable paucity of major igneous events in this western part of the NCB over a considerable time span (approximately 1000 Ma).
      The work provides fundamental basis for future studies on diverse stromatolites and biogeochemistry of the Mesoproterozoic. The study was recently published in the international journal Precambrian Research.
      This research was supported by the Strategic Priority Research Program of Chinese Academy of Sciences and the National Natural Science Foundation of China, and National Aeronautics and Space Administration and National Science Foundation of US.
      Reference: Zhang, T., Myrow, P.M., Fike, D.A., McKenzie, N.R. Yuan, J., Zhu, X., Li, W., Chen, J.*, 2020. Sedimentology, stratigraphy, and detrital zircon geochronology of Mesoproterozoic strata in the northern Helan Mountains, western margin of the North China Block. Precambrian Research, 343, 105730. https://doi.org/10.1016/j.precamres.2020.105730
      Detailed sedimentary logs of the Mesoproterozoic redbeds of the Huangqikou Formation and the overlying carbonate succession of the Wangquankou Formation in the Helan Mountains, North China.
      Representative facies of the Mesoproterozoic redbeds of the Huangqikou Formation.
      Diverse Mesoproterozoic stromatolites of the Wangquankou Formation.
      Detrital zircon geochronologic results in the western margin of the North China Block.
       
      Carbonate carbon and oxygen isotopes of the Wangquankou Formation.
    2020-04-30
  • Recent study reveals spatial variation in carbonate carbon isotopes during the Cambrian SPICE event across the eastern North China Platform
    The Steptoean Positive Carbon Isotope Excursion (SPICE) is a large excursion (by ~5‰) in marine carbon isotope (δ13C) records during the middle-late Cambrian transition, which is documented worldwide. The SPICE is hypothesized to be caused by a global carbon cycle perturbation (enhanced global carbon burial), which is accompanied with dramatic marine anoxia and euxinia. The SPICE event is coincident with and ascribed to, most likely the second phase of, the Dresbachian (or end-Marjuman) extinction event that slashed approximately 40% of marine genera during the early stage of life evolution. Recent studies imply that the synchroneity and magnitude of the SPICE may be controversial, which hampers proper interpretation on stratigraphic correlation and biogeochemical cycling.
      The Steptoean Positive Carbon Isotope Excursion (SPICE) is a large excursion (by ~5‰) in marine carbon isotope (δ13C) records during the middle-late Cambrian transition, which is documented worldwide. The SPICE is hypothesized to be caused by a global carbon cycle perturbation (enhanced global carbon burial), which is accompanied with dramatic marine anoxia and euxinia. The SPICE event is coincident with and ascribed to, most likely the second phase of, the Dresbachian (or end-Marjuman) extinction event that slashed approximately 40% of marine genera during the early stage of life evolution. Recent studies imply that the synchroneity and magnitude of the SPICE may be controversial, which hampers proper interpretation on stratigraphic correlation and biogeochemical cycling.
      In order to test the spatial variation of the SPICE, Prof. CHEN Jitao from Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, in collaboration with his colleagues, studied six outcrop sections across a ~700 km transect along the eastern North China Platform by using sedimentology, trilobite biostratigraphy and carbon isotopes methods in recent years. The research results have been published in the international journals Palaeogeography, Palaeoclimatology, Palaeoecology.
      Their study found that the SPICE is present in all the studied sections, but showing different features regarding the duration and magnitude. An abrupt increase in δ13C from ~1.5‰ to 3.5‰ occurs in three Shandong sections, with maximum value present only in a thin (0.5-1.2 m thick) transgressive lag deposit (crudely wave stratified, bioclastic grainstone). In contrast, the δ13C record of the Baijiashan and Shashan sections in the Liaoning region displays a gradual increase (~20 m thick) from ~1.5‰ to the maximum value of 4.7‰. Both facies analysis and trilobite collections suggest that the spatial variation of the SPICE in the North China Platform most likely resulted from missing of sedimentary record (with high δ13C values) in the Shandong sections as a result of erosion and non-deposition during sea-level lowstand, a possible coeval hiatus prior to the Sauk III transgression in the Laurentian basins.
      This is a case study that utilizes an interdisciplinary approach involving sedimentology, stratigraphy, and geochemistry to better understand geological issues. This study reports the complete record of SPICE from the North China Platform, and provides fundamental basis for future global correlation of SPICE.
      The study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences and the National Natural Science Foundation of China.
      Reference: Wang, Z., Chen, J.*, Liang, T., Yuan, J., Han, C., Liu, J., Zhu, C., Zhu, D., Han, Z.*, 2020. Spatial variation in carbonate carbon isotope during the Cambrian SPICE event across the North China Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 546, 109669. https://doi.org/10.1016/j.palaeo.2020.109669
      Detailed sedimentary loggings of the Miaolingian-Furongian boundary successions in the eastern part of the North China Platform
      Representative facies of the Miaolingian-Furongian boundary successions in the eastern part of the North China Platform
      Representative trilobites of the Miaolingian-Furongian boundary successions in the eastern part of the North China Platform
      Correlation of carbonate δ13C records of the upper Miaolingian to the lower Furongian succession from the eastern part of the North China Platform
    2020-04-24
  • Oceanic redox evolution around the end-Permian mass extinction at Meishan
    The end-Permian marine extinction (EPME) eliminated >80% of species globally, making it the most severe extinction of the Phanerozoic. Anoxia and euxinia are potential kill mechanisms that may have contributed to this biotic crisis. However, redox changes in the atmosphere-ocean system are likely to have been complex, with both the vertical location of the oxic-anoxic boundary (in the water column or sediments), and the total area or volume of anoxic and euxinic water in the global ocean changing over time.
      The end-Permian marine extinction (EPME) eliminated >80% of species globally, making it the most severe extinction of the Phanerozoic. Anoxia and euxinia are potential kill mechanisms that may have contributed to this biotic crisis. However, redox changes in the atmosphere-ocean system are likely to have been complex, with both the vertical location of the oxic-anoxic boundary (in the water column or sediments), and the total area or volume of anoxic and euxinic water in the global ocean changing over time.
      Recently, an international research team from the Nanjing Institute of Geology and Palaeontology of the Chinese Academy of Sciences, Western Carolina University and Nanjing University reported a series of geochemical analyses on iron speciation and major and trace element data from 141 samples of the Meishan-1 core, which was drilled at a site 550 m to the west of the Meishan D section. The research results have been published online in Palaeogeography Palaeoclimatology Palaeoecology.
      Iron speciation results, in combination with authigenic concentrations and enrichment factors of redox-sensitive metals (Mo, V, and U), and previously published macrofossil, trace fossil, and bioturbation evidence, suggest that: 1) Beds 21-24d were deposited beneath a predominantly oxic water column, 2) Beds 24e-28 were deposited under a persistently anoxic watermass with intermittently euxinic bottom water, and 3) Beds 29-34 were deposited under primarily ferruginous conditions. Excess fractions and enrichment factors of U, V and Mo in the anoxic and euxinic intervals of the Meishan-1 core suggest that authigenic precipitation of redox-sensitive trace metals mainly occurred before and during the EPME, with nearly no detectable authigenic U, V, or Mo accumulating after the EPME.
      The new results, along with published U, V and Mo concentrations from across the Neotethys, Paleotethys, and Panthalassic Ocean basins, indicate that oceanic trace metal reservoirs were depleted before and during the main extinction interval. This depletion of oceanic trace elements suggest a spatial expansion of both anoxic and euxinic watermasses prior to and during the EPME. The apparent coincidence in timing between the mass extinction and the areal expansion of anoxic and euxinic watermasses suggests that these factors played important roles in the loss of marine biota around the PTB, through oxygen deprivation and H2S toxicity.
      This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences, the National Natural Science Foundation of China and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences.
      Reference: Xiang, L., Zhang, H.*, Schoepfer, S.D., Zheng, Q.F., Yuan, D.X., Cai, Y.F., Cao, C.Q., Shen, S.Z., 2020. Oceanic redox evolution around the end-Permian mass extinction at Meishan, South China. Paleogeogr. Paleoclimatol. Paleoecol. 544, 109626. https://doi.org/10.1016/j.palaeo.2020.109626
      Stratigraphic distributions of selected redox proxies around Permian-Triassic boundary in the Meishan section
    2020-04-21
  • Discovery of a new leafy liverwort from mid-Cretaceous Burmese amber
    Recent studies indicate increasing numbers of fossil organisms have been found in the Amber inclusions. However, few fossils have been documented for fossil liverworts in amber. Recently, a research team of the Mesozoic plants led by Prof. WANG Yongdong and Dr. LI Ya from Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS), cooperated with Prof. Harald Schneider from Xishuangbanna Tropical Botanical Garden, CAS and Prof. WU Pengcheng from Institute of Botany, CAS, have investigated the liverwort inclusions from the mid-Cretaceous Burmese amber.
      Recent studies indicate increasing numbers of fossil organisms have been found in the Amber inclusions. However, few fossils have been documented for fossil liverworts in amber. Recently, a research team of the Mesozoic plants led by Prof. WANG Yongdong and Dr. LI Ya from Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (NIGPAS), cooperated with Prof. Harald Schneider from Xishuangbanna Tropical Botanical Garden, CAS and Prof. WU Pengcheng from Institute of Botany, CAS, have investigated the liverwort inclusions from the mid-Cretaceous Burmese amber.
      They found a distinctive and anatomically preserved sterile branch of Frullania (Frullaniaceae, Porellales), and described it as F. partita sp. nov. after detailed comparisons with related extant and fossil species of Frullania. This research results have recently been published in the international geoscience journal Cretaceous Research.
      This new species is mainly characterized by apically apiculate leaf lobes, helmet-shaped to campanulate water sacs situated in some distance to stem, lanceolate styli, and apically deeply bilobed underleaves carrying rhizoid bundles in their basal parts.
      Recent molecular based studies introduced the hypothesis that the diversity of the predominantly epiphytic liverworts Porellales expanded during the Cretaceous Terrestrial Revolution (KTR) period around 125–80 Ma. Until now, the fossil record provides only insufficient support to elucidate this hypothesis.
      Porellales comprise seven families, viz. Porellaceae, Goebeliellaceae, Lepidolaenaceae, Radulaceae, Frullaniaceae, Jubulaceae, Lejeuneaceae. Representatives of the Porellales are most common in Cenozoic amber, however, these liverwort inclusions in Cretaceous amber are relatively rare and usually consist of small fragments, rather than complete plants. So far, only a few taxa (3 families 4 genera 6 species) of Porellales have been described from the mid-Cretaceous Burmese amber.This new discovery contributes our understandings for the diversity aspects of Frullaniaceae (Porellales) of Burmese amber inclusions. The bark fragments connected to the branch provide the evidence that the fossil is an epiphyte.
      This study was supported by the National Natural Science Foundation of China, and the Strategic Priority Research Program of the Chinese Academy of Sciences.
      Reference:Li, Y., Wang, Y.-D.*, Schneider, H., Wu, P.-C., 2020. Frullania partita sp. nov. (Frullaniaceae, Porellales), a new leafy liverwort from the mid-Cretaceous of Myanmar. Cretaceous Research 108, 104341. https://doi.org/10.1016/j.cretres.2019.104341
      Morphology and anatomy of the sterile branch of Frullania partita sp. nov. from the mid-Cretaceous of Burmese amber
      Reconstruction of Frullania partita sp. nov. (drawn by Ding-Hua Yang)
    2020-04-17